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ABSTRACT 
A numerical analysis is given for the prediction of unsteady, two-dimensional fluid flow induced by a heat 
and mass source in an initially closed cavity which is vented when the internal overpressure reaches a 
certain level. A modified ICE technique is used for solving the Navier-Stokes equations governing a 
compressible flow at a low Mach number and high temperature. Particular attention is focused on the 
treatment of the boundary conditions on the vent surface. This has been treated by an original procedure 
using the resolution of a Riemann problem. The configuration investigated may be viewed as a test problem 
which allows simulation of the ventilation and cooling of such cavities. The injection of hot gases is found 
to play a key role on the temperature field in the enclosure, whereas the vent seems to produce a distortion 
of the dynamic flow-field only. When the injection of hot gases is stopped, the enclosure heat transfer is 
strongly influenced by the vent. A comparison with the results obtained when the radiative heat transfer 
between the walls of the enclosure is considered, indicate that radiation dominates the heat transfer in the 
enclosure and alters the flow patterns significantly. 
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N O M E N C L A T U R E 

a speed of sound Trad(k, rk) temperature of wall k at position rk 
A1 location ratio (A, = L1/L) (see Figure 1) Ttank temperature of the infinite tank 
A0 opening ratio (A0 = dSe/L) (see Figure 1) u,t components of the velocity of the gas in the 
Cv specific heat of fluid at constant volume x and y directions 
Cp specific heat of fluid at constant pressure x, y coordinates along the horizontal direction 
e specific internal energy of the gas and vertical direction 
gF gravitational acceleration 
H enclosure height Greek symbols 
J(k, rk) radiosity of wall k at position rk 
k thermal conductivity of the gas β volume expansion coefficient at constant 
L enclosure width pressure 
m mass flow-rate γ ratio of the specific heats 

maximal rate of mass injected μ viscosity of the gas 
mass flow-rate per unit area ε(k) emissivity of wall k 

Mtotal total mass injected ρ density of the gas 
P pressure of the gas ρ(k) reflectivity of wall k 
Ptank pressure of the infinite tank σ Stefan-Boltzmann constant 
T temperature of the gas Φrad net radiant heat flux of wall 
Tcio initial temperature of the injected gas φrad(k, rk) net density of radiant heat flux of wall k at 
Tcif final temperature of the injected gas position rk 
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Subscripts 
0 reference state 
k wall k 
l left state in the Riemann problem 
r right state in the Riemann problem 
rk position on wall k 

INTRODUCTION 

The transport of heat and mass by buoyancy-induced convective motion is a mechanism which 
finds relevance in many physical systems (building or nuclear reactor insulation, double-pane 
windows, solar collectors, enclosed fires, etc.). It is for this reason that natural-convection heat 
transfer in cavities has received considerable attention for several years. A large number of 
numerical or experimental studies have been devoted to natural convection in differentially-heated 
cavities when the hot and the cold walls are vertical1-3. In the last decade, this idealized problem 
has been extensively studied in various contexts; inclined enclosures containing internal heat 
sources4,5 and radiation combined with other modes of heat transfer in a multidimensional 
cavity6,7. Recent studies have focused on the analysis of natural convection in open cavities 
because of its important role in solar thermal central receiver systems as well as other engineering 
systems (electronic equipment, etc.), to minimize and predict heat losses. Penot8, Le Quere et 
al.9 and Chan and Tien10 have examined laminar natural convection heat transfer in 
two-dimensional rectangular open cavities using the Boussinesq approximation and the 
finite difference method. Miyamoto et al.11 have studied the effects of an aperture and cavity 
orientation, with respect to the direction of gravity, on steady laminar natural convective heat 
transfer in the cavity. Humphrey and To12 have analyzed, theoretically, turbulent free convection 
heat transfer in a square open cavity. Experimental studies have been performed by Humphrey 
et al.13, Sernas and Kyriakides14, Hess and Henze15, Chen et al.16 and Chan and Tien17. Other 
problems involving natural convection in open cavities have been studied by Doria18 in predicting 
fire spread in a room, and we can quote the work of Sefcik, Webb and Heaton19, as an example, 
where the buoyancy-driven flow and heat transfer are restricted by vents in the top and bottom 
walls of the enclosure. Yang20 and Ostrach21 presented surveys of experimental and numerical 
studies prior to 1988. Nevertheless, a large number of these studies have been made with vertical 
walls heated at a uniform temperature and within the approximation which takes into account 
the density variation in the buoyancy term, but neglects it in the inertial terms of the equations 
of motion. The conditions under which this traditional Boussinesq approximation applies to a 
given Newtonian liquid or gas have been known since the work of Gray and Giorgini22. This 
assumption is least correct for high-Grashoff number problems, when the temperature differences 
in the enclosure are large. This is the reason why, in the study of flows with large temperature 
gradients (theoretically superior to 10% in the case of air), the conditions for the validity of the 
Boussinesq approximation are not satisfied, and it is necessary to solve a compressible flow at 
a low Mach number and high temperature. The difficulty with this kind of problem is manifest 
in the large discrepancy which exists between the flow and the velocity of sound, which requires 
a specific numerical treatment of the equations because of their stiffness, as discussed by Fernandez 
and Guillard23 for the case of low Mach number reactive flows. 

In the last decade, understanding the phenomena of coupled heat and mass transfer in cavities 
subject to high temperature has found important applications in the safety assessment of nuclear 
reactors, buildings, etc. The knowledge of the behaviour of concrete under fire (pressure, 
temperature) is important to achieve more effective methods of detection and control. In recent 
years, there has been considerable research interest in CFD regarding enclosed high-temperature 
or reactive flows. The present work is related to these topics. 

Specifically, a numerical study of the flow induced by an internal heat and mass source in an 
initially closed cavity has been developed. The large increase of temperature and pressure being 
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generated triggers the opening of a vent in the ceiling of the cavity, simulating the ventilation 
and cooling of the enclosure. The Boussinesq approximation cannot be used in this study and 
because of the injection of hot gases in a closed cavity and the large temperature differences 
and also due to the necessity to compute the pressure build-up in the cavity. Therefore we must 
solve a low-Mach number, high-temperature compressible flow problem. A modified ICE method 
(Implicit Continuous-fluid Eulerian)24 is proposed for solving the 2D unsteady Navier-Stokes 
equations. Particular attention is needed for the treatment of the boundary conditions after the 
opening of the vent; to this purpose, we refer to the resolution of a Riemann problem. This 
original procedure allows accurate treatment of an outgoing flow and a possible incoming one. 
In this paper the response of the enclosed fluid to a heat and mass source is studied, including 
the effects of the opening of the enclosure and the effects of the radiant heat transfer upon the 
flow patterns. 

ANALYSIS 

Physical model 
The model used for the study is as shown in Figure 1. A two-dimensional rectangular enclosure 

is surrounded by walls, supposed adiabatic. As initial conditions, we assume that the enclosed 
air and walls are at the ambient temperature and the air is stagnant. At time t = 0, a specified 
heat and mass source is placed somewhere on the floor of the cavity. Hot gases, whose final 
temperature is about 1500 K, are produced by the source until time t3. The enclosed air mixes 
with the hot source gases and moves convectively due to the gradients of temperature. The 
temperature and the pressure of the enclosed fluid increase until an overpressure equal to 
500 mbar develops, when the surface dSe, in the ceiling of the cavity, opens. The hot gases can 
flow out of the cavity to the exterior, settling to atmospheric pressure and ambient temperature. 
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The basic assumptions made in this analysis are as follows: 
(i) the fluid motion and heat transfer processes are two-dimensional and unsteady; 
(ii) the fluid flow is laminar, and the fluid physical and transport properties are constant; 

(iii) viscous dissipation terms are neglected in the energy equation; 
(iv) the heat and mass source produces hot gases whose temperature and mass flow rate vary 

as a function of time, conveniently taken, so as to avoid large initial gradients of 
temperature and mass, which can generate discontinuities at the boundary during the 
initial time steps. After these stages, flow rate and temperature settle to constant values. 

The model for the injection is reported in Table 1 where Tcio and Tcif are, respectively, 
the initial and final temperature of the gas injected in the cavity, is the maximal 
rate of mass injected, Mtotal is the total mass injected in the cavity; 

(v) this injection of gas is assumed to take place normal to the cavity floor, so that u = 0; 
(vi) the flow is ejected perpendicularly through the cavity ceiling to an infinite tank modelling 

the atmosphere with constant conditions, thus: Ptank = Patm and Ttank = 300 K and 
u = v = 0. 

(vii) for this analysis, the radiative heat transfer between the walls of the cavity could be 
considered. In this case, the walls are treated as grey diffuse surfaces and the vent as a 
black surface25. The confined fluid is assumed to be radiatively non-participating (similar 
to the hot gases injected). 

Because of the size of most enclosures where fires develop, the validity of the assumptions of 
two-dimensional heat transfer processes and laminar fluid flow can be questioned. 
Three-dimensional effects will be present and fully developed fires are highly turbulent. However, 
this paper does not pretend to study an enclosed fire without taking into account a reactive 
model. Moreover, considerable insight into the flow phenomena and heat transfer of the problem 
can be gained without initially introducing the very complex turbulent three-dimensional motion. 
The assumption of constant transport physical properties is a numerical convenience and is 
frequently used in generalized studies in order to decrease the number of independent parameters. 
The third assumption is justifiable in comparison with conduction and convection heat 
dissipation. The model for the injection of gases can, for example, be adopted to simulate the 
thermal degradation of fuel surface. The assumption of grey diffuse surfaces is often used in 
most studies about radiative heat transfer. In addition, Toor and Viskanta26 have shown that, 
for most enclosures, the assumption of grey diffuse walls is a reasonable approximation to reality. 
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In convective processes, the radiative heat transfer may affect the temperature field and hence 
the flow field, directly through absorption and emission processes within the fluid. This effect 
may be small, for example if the fluid is dry air. Radiation may also have an effect on the flow 
field indirectly through the temperature distribution on solid boundaries. Also, emission of 
radiation by the boundaries as well as radiative interaction between them have an important 
bearing on the boundary temperature. 

Mathematical model 
Governing equations 

The governing equations relating to the gas are the well-known, compressible Navier-Stokes 
equations. For an unsteady two-dimensional real fluid, the continuity, momentum and energy 
equations are written in cartesian coordinates as: 
Continuity equation 

(1) 

Momentum equations 

(2) 

(3) 

Internal energy equation 

(4) 

Here we have assumed that the viscosity μ is constant and that the second coefficient of viscosity 
λ obeys to the Stokes equation: 3λ + 2μ = 0. The specific heat at constant volume Cv and the 
thermal conductivity k are constant and are related to the Prandtl number and viscosity by the 
relation: 

Pr = μγCv/k 
We assume also that the gas obeys the ideal gas equation of state: 

P = (γ - 1)ρe 
with 

e = CvT 
and 

γ = Cp/Cv 

If the radiative heat transfer is considered, the above equations are coupled with the following 
energy balance equation at the adiabatic walls7: 

Φrad = k ∂T/∂n (5) 

where « represents the coordinate normal to the wall. 
Equation (5) is a boundary condition which couples the radiative, convective and conductive 
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heat transfer in the enclosure. Any change in the wall surface temperature simultaneously affects 
the convection to the wall and the net radiant heat flux at the wall. The density of radiative 
flux along wall k at the position rk is given by: 

(6) 

where ε(k) and ρ(k) are the emissivity and reflectivity respectively of wall k and the radiosity 
J(k, rk) for plane walls is given by26: 

(7) 

dFdAkdAt is a function of the configuration. The radiative model and computational resolution 
is given in more detail in Allançon et al.71. 

NUMERICAL METHOD 

Choice of the method 
In numerical studies on convection in cavities, the problem is usually simplified to a cavity 

model with isothermal hot and cold boundaries; the solution is based upon the Boussinesq 
approximation, which assumes the fluid to be incompressible but expansive; then, the gas density 
is only a linear function of the temperature. We can write the relation which replaces the equation 
of state: 

where T and ρ are, respectively, the temperature and the density of the gas, and the subscript 
0 denotes the reference state. β is the thermal expansion coefficient defined by: 

However, in our analysis, we cannot use this approximation of an incompressible fluid, because 
some mass is injected in an initially closed cavity. Therefore, a physical incompatibility appears 
between the injection of mass and the motion of an incompressible fluid surrounded by a closed 
cavity, even in the case of low velocities of injection. Moreover, the knowledge of pressure values 
is of capital importance, because the cavity opens to the exterior at an overpressure equal to 
0.5 bar; and the computation of the pressure with the Boussinesq approximation would be 
erroneous due to the assumption of incompressibility. In addition to that, even if the real limits 
of validity of the Boussinesq approximation are not yet definitely known, theoretical limits have 
been proposed by Gray and Giorgini22 in the cases of air and water, respectively: 

ΔT/T0 0.10 and ΔT/T0 0.0043 (when T0 = 288 K) 
where ΔT is the difference between the hot temperature and the temperature of the reference 
state—the Boussinesq approximation becomes invalid at high values of the temperature gradient. 
Therefore, to solve our problem, we had to consider the full compressible Navier-Stokes 
equations. Numerical methods for solving these equations are numerous. The most popular 
finite-difference methods are the Beam and Warming scheme27 and the MacCormack explicit 
or implicit schemes28,29. More recently, finite volume schemes, used to solve hyperbolic systems 
of partial differential equations, have been successfully extended to the Navier-Stokes equations 
(Van Leet30 etc.). 
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However, the explicit technique is very attractive because of the simplicity of use and the 
small number of calculations during a time step, but this kind of scheme is limited by the value 
of the time step due to the stability conditions. So, at first view, such a technique would not 
have been interesting for our analysis owing to the time for simulation (about 30 sec), and the 
required time step, of the order of 10 - 6 sec. The choice between explicit and implicit schemes 
is a controversial decision. Implicit schemes for the convective derivatives involve, in the worst 
cases, gigantic matrix equations, and in the best cases, the inversion of a tridiagonal matrix. 
Therefore, their operation counts and speeds are appreciably worse than the performance 
obtained using the corresponding explicit schemes. The advantage of implicit schemes, which 
in some problems outweighs the dual disadvantages of program complexity and operation count 
per time step, is the ability to accept much larger finite difference time steps without exciting 
numerical modes of instability. The choice between explicit and implicit differencing lies in the 
physics (or in the mathematics) of the specific problem being solved. When the physical 
phenomenon of interest varies appreciably on a time scale Τ, no calculation with Δt » τ, can 
reasonably be claimed to reproduce the phenomenon accurately. 

Moreover, our study is devoted to an unsteady compressible flow at low Mach number, and 
implicit methods lose a lot of their interest for this kind of problem due to the treatment of the 
boundary points. This treatment needs a time step which cannot be really larger than the explicit 
one, when there are subsonic boundaries and large source terms31. Also, the results obtained 
for subsonic compressible flows with a classical or current implicit or explicit method 
(MacCormack, Beam and Warming) are not accurate when the ratio between the maximum 
and the minimum eigenvalues of the Jacobian matrix of the system is too large. In our case, 
the values of the gas velocity υ and the sound speed a are respectively about 1 m/s and 1000 m/s 
near the injection points of the hot gases. Therefore, the ratio (υ + a)/υ is about 1000, and it is 
really too large (problem of a poorly-conditioned matrix). 

It is for all those reasons that we have chosen a modified ICE technique developed by Harlow 
and Amsden24 which avoids the disadvantages of classical explicit and implicit schemes, to solve 
the compressible Navier-Stokes equations. 

ICE technique 
This method is useful for the numerical solution of time-dependent problems in 

multidimensional fluid dynamics for all Mach numbers from zero (incompressible limit) to 
infinity (hypersonic limit). In this technique, the system of PDE is solved under the form written 
in (1), (2), (3) and (4). The finite difference mesh used for solving the above equations consists 
of rectangular cells of width Δx and height Δy. A fragment of the finite difference mesh is shown 
in Figure 2, which illustrates the centering of the field variables relative to a typical cell. The 
index i counts cell centers from left to right, while the cells in the y-direction are labelled with 
the index j from bottom to top. Quantities defined at cell edges are labelled with indices i± 1/2 

or j ± 1 / 2 . The dependent variables are located within a cell as shown above: u, the horizontal 
component of the velocity, at the middle of the vertical sides; v, the vertical component of the 
velocity, at the middle of the horizontal sides; and all other variables are evaluated at the cell 
center. The fluid region is surrounded by a single layer of fictitious cells, Figure 3. 

The continuity equation is differenced in terms of cell-centered gradients of mass fluxes through 
cell walls. These fluxes consist of two components; a spatially centered term and a donor cell 
(or upwind) term. The momentum equations are similarly differenced, although the convective 
terms are not written in terms of momentum fluxes, but as edge-centered fluxes of a velocity 
gradient (see the appendix). The difference equation for the internal energy is similar to those 
for the momenta. The equation to be solved simultaneously with the transport equations is: 

Pi,j-F(ρi,j,ei,j) = 0 

where F is the equation of state. 
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An iterative procedure for the pressure is used until the following convergence criterion is 
satisfied: 

where ε is a parameter of convergence tolerance, and the superscript v denotes the iterative 
count, while is the estimate of the pressure at the advanced time. 

Treatment of the boundary conditions 
Boundary conditions are easily imposed by setting appropriate values of the dependent 

variables in the fictitious cells surrounding the mesh. One must treat three kinds of boundary 
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conditions: 
• the walls of the cavity as rigid boundaries; 
• the injection of hot gases from the floor of the cavity; 
• the ejection of some gases out of the cavity to an infinite tank through an opening somewhere 

on the ceiling. 
For a rigid boundary, owing to adiabatic boundary condition, the normal gradient of temperature 
(or energy) is zero; solid walls and zero slip at the walls imposes that the normal and the 
tangential velocity components, respectively be equal to zero. The variable ρ is treated in the 
same way as T (or e). If the radiative heat transfer is considered the boundary condition for 
the temperature is determined by the energy balance equation written previously. Once the 
radiative fluxes have been determined, the temperatures of the boundaries can be calculated 
from equations (5)-(7), which couple the radiation and convection heat transfers7. 

For the injection of hot gases through the floor, a specified temperature source at some location 
on the floor is imposed, of an intensity varying as a function of time, and likewise for the mass 
flowrate. Moreover, we have assumed that the injection of hot gases is normal to the floor, so, 
u = 0. 

The υ-component of the velocity, the density and the pressure are deduced from the equations: 

with the mass flow-rate of injected gases per unit area. 
P = ρRT 

P1 + ρ1v2
1 = P2 + ρ2v2

2 

where the subscripts 1 and 2 denote, respectively, the injection points and the immediately 
neighbouring interior points. 

It would appear that, for the outflow boundary conditions on the ceiling vent, the problem 
might be treated in the same way as the inflow conditions, but the problem is complicated by 
the fact that we do not know the temperature and the mass flow rate of the ejected gases. 
Moreover, the problem is rendered difficult because the ejected flow is subsonic. In this case, 
the boundary conditions must take account of the exterior conditions, whereas for the case of 
supersonic exit, the variables can be extrapolated. In addition to that, the model to be used 
should be able to deal both with outcoming flow from the cavity, and possible incoming cool 
flow into the cavity from the exterior. To solve this problem one can use the method of 
characteristics; but the disadvantage of this method is the iterative building of the characteristic 
grid which needs a double interpolation procedure. Moreover, according to the sign of the flow 
velocity, one has to take a different characteristic scheme. In view of all these, we have chosen 
to consider another numerical method, and to treat the problem of the exit condition as the 
solution of a Riemann problem. 

Solution of a Riemann problem 
The solution of a Riemann problem32 avoids for the present study the disadvantages of the 

characteristics method. Thus, there are no interpolation difficulties, and the method takes direct 
account of inflow and outflow by referring to the immediately neighbouring points. One assumes 
that during a time step equal to the CFL time step, the flux is constant. This flux is taken 
constant during the entire time step chosen for the overall numerical solution. In the exit section, 
the equations governing the flow are given by: 

(8) 
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where 

The first step is to find a solution to a simpler set of the original equations. This simpler set is 
that of the homogeneous equations, and is given by: 

(9) 

Once the solution V, for this simpler set of equations is obtained, it can be corrected for the 
missing inhomogeneous part h(V, y). This correction is done using the operator splitting 
technique. To start with, however, the analysis will be restricted to the homogeneous equations 
(9). 

As it is well known, a Riemann problem is characterized by initial values which are a left 
state Sl(ρl, al, vl) and a right state Sl(ρr, ar, vr) with the respective distances yj and yj+1 at time 
tk, where the density ρ, the sound velocity a and the component of the gas velocity v are known. 
An initial discontinuity breaks into left- and right-running waves, which are separated by a 
contact surface. The state behind the left wave on the left side of the contact surface is defined 
by Sl(p*l, a*l, v*l), and in a similar way, the state behind the right wave on the right side of the 
contact surface is Sr(ρ*r, a*r, v*r), Figure 4. Because of the physical conditions and assumptions 
of our study, we are certain that we cannot have fully-developed shock waves, and therefore we 
may consider the case of an elemental wave, which can be either a left-running wave or a 
right-running wave. The states Sl(ρl, al, vl) and Sr(ρr, ar, vr) ahead of a left or right moving 
rarefaction wave are known. The sound speed, density, and flow velocity behind a left- or 
right-moving expansion wave are: 

(10) 

(11) 
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(12) 

Equations (10) to (12) are the basic expressions needed for determining the solution for a 
Riemann problem. We can combine relations (10) to (12) to eliminate the common flow velocity 
v* = v*l = v*r on each side of the contact surface, and obtain the value of P*. This can be done 
here because we know that the wave model is only composed of simple waves and that equations 
(10) to (12) are exact for this model. Hence, the guess of P* is given by: 

(13) 

The value of P* allows computation of the other parameters from the isentropic relations (7) to (9): 
a*l, a*r, v*l, v*r, T*l, T*r 

The Riemann problem resolution is virtually finished. However, to obtain the solution of the 
complete partial differential equations (8), governing the one-dimensional unsteady motion of 
a gas in the opening of the cavity, we have to take account of the right-hand side of equation 
(8). Let then the solution of the homogeneous equations, which is the solution of the Riemann 
problem, be denoted by As soon as this Riemann solution is known, the second step is to 
solve the set of time-split equations given by: 

with: 

where h1, h2, h3 are the functions corresponding to the source terms of the equations. In order 
to obtain the inhomogeneous terms, these simple ordinary differential equations are to be solved 
using the Cauchy-Euler time-integration method. 

RESULTS AND DISCUSSION 

To determine a suitable grid size, the computed profiles of velocity and temperature were 
compared for a number of grid sizes. A uniform grid size was used. After several tries and 
comparisons of the solution between grid sizes, a final grid size of 22 * 22 grid points was chosen 
for this study because it was found to be satisfactory in terms of both accuracy and computing 
economy. Conservation of mass, momentum and energy was found to be satisfied. Typical 
computing times on an IBM 3090 for the 22*22 grid chosen and the time step equal to 
2.5 x 10 -4 sec were of the order of 1.3 x 10 -4 sec CPU/point/iteration. 

The results are presented in two sections. The first section deals with the thermal heat transfer 
and dynamic field in a rectangular enclosure due to the injection of hot gases. This section 
highlights that the heat and mass source and radiative heat transfer in the enclosure dominate 
this kind of flow. This is evident when comparing the results obtained in three cases: injection 
of hot gases, injection of hot gases coupled with radiation and natural convection. The second 
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section concerned a parametric study related to three essential factors: the location of the injection 
of hot gases, the effects of the opening ratio A0, the influence of the location of the vent with 
respect to the injection (location ratio A,). 

General study: heat transfer and dynamic fluid flow 
In this first section, the enclosure size is 1m*2m. The initial temperature imposed in the 

cavity is T0 = 300 K, and the initial pressure is equal to 105 Pa. The parameter values retained 
for this simulation are: 

The final temperature Tcif of the hot gases is reached at t1 = 2 sec, and the injection of hot gases 
is stopped at t3 = 20 sec. The thermophysical properties are taken at the reference temperature 
(T0). 

Forced convection 
Figures 5, 6, 7 represent, respectively, the evolutions of velocity, density and temperature at 

nine different times: t = 1, 2, 5, 10, 15, 18, 20, 25, 30 sec. These times have been chosen as best 
to illustrate the evolution of the flow. For a complete understanding of the phenomena, one 
should consider the velocity field, the density field, and the corresponding temperature field. 

Figure 5 shows the velocity field. At t = 1 sec, the injection of hot gases sets the fluid in motion, 
but essentially is limited to the injection area. A low compression zone is also developing in 
front of the hot gases: the density is about 1.19 kg/m3 (see Figure 6). In Figure 7, we can see 
the development of the corresponding isotherm lines at the bottom of the cavity, due to the 
heat transferred by the hot gases injected into the enclosed fluid. As time progresses, isotherms 
develop quickly to the top of the cavity. This phenomenon is due to the injection of hot gases, 
which mainly governs the temperature field from t = 2 sec. At t = 2 sec, the overpressure reaches 
500 mbar and triggers the opening of the cavity, when the fluid starts to flow out of the cavity, 
with a maximum velocity about 7 m/s (Figure 5). Because the injection of hot gases and the 
vent are not in the same positions respectively in the floor and at the top of the cavity, the flow 
is bent and eddies appear near the main flow, which compresses them (from t = 5 sec to 
t = 20 sec). 

In Figure 6, from t = 2 sec, when the cavity opens, isolines of lighter fluid appear (the density 
varies from 0.4 kg/m3 to 1.10 kg/m3), which correspond to the hottest fluid whereas the fluid 
at high density stays in the right corner at the bottom of the cavity. This part of the cavity 
corresponds to the small eddy which is the last to be subjected to the heat flux (from t = 5 sec 
to t = 18 sec). At these different times, concomitant with the increase of convection and its 
development in the cavity, heat exchange takes place in the entire cavity too (see Figure 7). 
From t = 10 sec, nearly all the enclosure (80%) is subject to an obvious increase of temperature: 
the temperature varies from 600 K to 1500 K. This is observed even though the cavity is opened 
and the opening of the cavity seems to produce a distortion of the dynamic flow-field only, but 
not of the temperature field. The influence of the opening on the temperature field is first seen 
at t = 25 sec, when the cool air starts entering into the cavity and when the injection of hot 
gases is stopped. This is clearly shown in Figure 5, where a depression is created at the exit 
section. With buoyancy and convection, this fluid inflow stimulates the ventilation and cooling 
of the enclosure, and the velocity field is completely modified by the incoming flow, starting 
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from t = 25 sec. In Figure 6, at the end of the injection period, an area of gas at uniform density 
equal to 0.30 kg/m3 spreads on the bottom. At the same time, the incoming cool flow with 
density equal to 0.70 kg/m3 (through the opening), expands rapidly due to the contact with 
hotter fluid: the density becomes equal to 0.30 kg/m3 at t = 30 sec. These phenomena can be 
observed in Figure 7, where the cooling of the enclosure is obvious; the fall in temperature is 
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about 500 K-700 K, even though the cool flow is rapidly heated by conduction by the fluid in 
contact with it. 
Radiative heat transfer 

In this section, we study the effects of radiation on the flow pattern, by examining the same 
conditions while neglecting radiative heat transfer. Figure 8 illustrates the temperature and 
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velocity fields only at four times, because of space limitations: t = 1 sec, t = 5 sec, t = 15 sec, 
t = 25 sec. These times selected are determined as far as possible to allow the best comparison 
with the case without radiative heat transfer. 

At t = 1 sec, the results obtained in the two cases (with and without radiation) are very similar, 
because the walls temperatures reached are not high enough to make the parietal radiative heat 
transfer influence significant. At t = 5 sec, the velocity fields are still very similar to those obtained 
for the case neglecting radiation, because the flow pattern is essentially driven by the injection 
of mass at the bottom of the enclosure and by the vent of the cavity. Conversely, the analysis 
of the temperature field shows the important influence of the radiative heat transfer on the 
development of the isotherms. Taking into account these radiative effects, and couple the different 
heat transfers produces an increase of the temperature of the fluid near the walls the enclosure. 
Hence, the walls temperatures change rapidly owing to radiation and the temperature of the air 
is increasing by nearly pure conduction, as it is clearly shown in Figure 8, at t = 15 sec. At the 
opening section, the temperature of the fluid is about 300 K, because of the hypothesis related 
to the exit section: the vent is considered as a fictitious black surface whose the temperature is 
equal to the temperature of the fluid contained in the infinite tank26. When the injection of hot 
gases is stopped (from t = 20 sec), we can note a specific flow field: an incoming cool flow at 
T = 300 K appears at the vent and moves downward along the right side of the enclosure, 
unlike the case neglecting the radiative heat transfer. The influence of convection on the 
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temperature profiles is obvious and the temperature field becomes completely different from 
those obtained in the previous case, which consists of superposed isotherms. Therefore, it follows 
from the comparison between the results obtained with and without radiation, that the 
development of the velocity field without radiation is very different from those including radiative 
heat transfer, the major difference being that no clockwise eddy appears at the center of the 
enclosure in the second case. The isotherms are also considerably modified. 

Natural convection 
The effects of the injection of hot gases on the thermal heat transfer and the velocity field are 

studied, in this section, by examining the specific case of a mass flow rate equal to zero. The 
injection area is the same as the case of forced convection and is supposed to be heated at a 
uniform temperature equal to 1500 K until t3 = 20 sec. In this simulation only the temperature 
gradient, and so the density gradient, produce fluid motion. It is clearly obvious that the 
temperature and velocity are very different to those of the forced convection, as shown in Figure 
9. The development of the isotherms is very slow and the convective currents are small. So the 
entire enclosure is slowly subject to a small increase of temperature up to t = 5 sec, only the 
hot surface area takes part in heat transfer. Almost the whole cavity is at about 400 K at t = 5 sec. 
However, the overpressure is reached at t = 3 sec (see Figure 11), and hot gases escape through 
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the vent to the exterior. Gases in contact with hot wall are heated by conduction, and become 
light. A swift upward current also appears on the hot surface and the enclosed fluid is swept 
along the current. From t = 25 sec, incoming cool flow appears at the exit section. Due to the 
gradient of density, it moves downward relatively rapidly and mixes with the enclosed hot fluid. 

Comparison forced convection/radiative heat transfer/natural convection 
Figure 10 illustrates the velocity and temperature profiles at mid-height at t = 5 sec to compare 

heat transfer and dynamics field for the preceding three cases studied and entitled forced 
convection, forced convection including radiative heat transfer and natural convection. The 
influence of radiation is very large as indicated in Figure 10. When the injection of hot gases is 
considered, it constitutes the main factor to the fluid motion. The profile of the component of 
the velocity υ is clearly influenced by this action. The component v of the velocity reaches a 
maximum when the radiative heat transfer is included. The maximal value is equal to 6.36 m/s. 
It is located up on the injection area due to the injection of hot gases, and to the recirculated 
air near the injection points. This maximum is nearly double the value obtained when radiation 
is neglected. Therefore, the radiative heat transfer induces much stronger convective currents, 
and near the walls, these profiles are in fact opposite to those induced by convection alone 
(forced convection and natural convection). The difference of the maximal value of υ between 
forced convection and natural convection is about 60%. In all cases, we can note negative profile 
of υ from l = 0.5 m induced by the cool fluid which moves downward along the right side of 
the enclosure. As a result the temperature distribution in the enclosure is considerably altered 
as shown in Figure 10. When radiation is considered, the walls temperature is greater than that 
of the fluid, except at the local hot spot centred on the area above the injection points. In this 
case, the fluid temperature is greater than those obtained in the other cases. The temperature 
profile for natural convection is very homogeneous and about 400 K. When only injection of 
hot gases is studied, the temperature distribution is very irregular, with a maximal value equal 
to 1300 K due to the heat and mass source and to the effects of the fluid compressibility. The 
fall of the temperature after the injection points is produced by the cool fluid currents, as shown 
in Figure 7. 
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The comparison between the average temperatures and the average pressures in the different 
cases give predictable results. The analysis of the evolution of the average temperatures shows 
an increase of temperature in all cases until the end of the hot gases injection, or until the end 
of the heating of the surface (t = 18 sec). The opening of the enclosure about 2 sec or about 
t = 3 sec in the natural convection case, does not lead to a decrease in the average temperature, 
except for natural convection. The heat losses are smaller than the heat given by the hot source! 
These results show the role of the radiative heat transfer in an enclosure when high temperatures 
are used. The maximal average temperature is equal to 1413 K at t = 18 sec. The injection of 
mass in a closed or partially open cavity also plays a key role, and the maximal value in forced 
convection is about double those obtained in natural convection (respectively about 1200 K and 
600 K). Even when incoming cool flow appears at the vent of the enclosures, it is worthy of 
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note that taking into account radiation is really important in the evolution of heat transfer: we 
can see the rapid fall of the average temperature produced by the incoming flow in contact with 
the right sidewall of the cavity. 

The study of average pressures leads to a brief remark, because the results are very similar 
whatever the kind of convection is studied: the increase of the temperature corresponds to an 
increase of average pressure, until the enclosure opens to the exterior when the overpressure is 
reached. Then we can see the pressure falls to the initial value, the major difference being that 
the overpressure is reached at various times. 

Parametric study 
Effects of the injection location 

The effect of the location of the injection points on the heat transfers are examined first in 
this second section, with the same conditions as for the general study. Figure 12 represents the 
isotherms and velocity fields at four specific times. Radiative heat transfer are not taken into 
account in this study. 

At t = 1 sec, we can note the vertical development of the temperature isolines to the top of 
the enclosure and, while the cavity is closed, the flow pattern consists of a only one clockwise 
eddy. When the overpressure is reached, the cavity opens to the exterior and the convective 
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motion strongly influences the development of the isotherms. Heat transfers are located only at 
the top of the enclosure. The result is the opposite to that obtained for the bottom injection of 
hot gases, where we noted a great homogenization of heat transfer. The horizontal development 
of the isotherms increases as time progresses. At t = 25 sec, the superposition of isothermal 
layers is obvious. At this moment, the incoming cool flow is lower than for the case of the 
injection located on the floor because the cool flow is rapidly swept along by two eddies, with 
opposite directions, near the opening. It is rapidly mixed with hot gases and cannot circulate 
in the entire enclosure. With regard to the velocity field, the results show a more complex 
development of the convective currents constituted by several eddies, which cannot allow a 
significant development of heat transfer. These differences in the flow pattern lead to obvious 
differences in the evolution of the average temperature of the fluid with respect to the first case 
studied (see Figure 11). The maximal value of the temperature is less greater than those of the 
bottom injection (respectively 1098 K and 1355 K). The two-dimensional treatment of this 
problem is currently straightforward because of the differences in the average temperature 
distributions. 

Influence of the opening ratio A0 
This section deals with the influence of the opening ratio A0 (A0 = 1/5, 2/5, 3/5, 1) of the 

enclosure on the heat transfer and velocity field. To simplify the parametric study, we have 
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considered a constant mass flow rate equal to 0.01 kg/sec. The hot gases are injected for 2 sec 
at a uniform temperature equal to 1500 K. An overpressure about 500 mbar is reached at 
t = 1.9 sec. The phenomena are studied until t = 4 sec, so that the incoming cool flow can be 
observed simultaneously with the outcoming hot gases through the vent. 

Figure 13 represents the temperature and velocity profiles in the enclosure at t = 3 sec for the 
four values of the opening ratio. The evolutions of temperature and velocity at t = 1 sec and at 
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t = 2 sec are not presented here: the results are very similar for all the values of the opening 
ratio, because the overpressure, which produces the opening of the enclosure, is reached at 
t = 1.9 sec. The area of injection is the same for the test cases, and we can note that increasing 
the opening ratio A0 produces an increasing of hot gas recirculation due to the downward 
movement of cool gases along side walls. For A0 = 1/5 and A0 = 2/5, the flow pattern is disturbed 
because it is made up of two clockwise eddies. It seems to be more structured for the other 
values of the opening ratio: the main flow is almost vertical, because the outcoming and the 
incoming flows are greater. For A0 = 1, the incoming cool moves downward along the two side 
walls. At t = 3 sec, we can see that there is only an outcoming flow for A0 = 1/5 while for the 
other values of A0 there are simultaneously an outgoing and incoming flows. These results are 
confirmed by the results presented in Figure 14, which shows the distributions of the component 
of the velocity υ at the different times at the vent section. For A0 = 1/5, at t = 2 sec, the profile 
of v is those specific to an exit section, with a maximal value equal to 2.13 m/sec. At the same 
time, for the other opening ratio, the velocity distributions are very different; they seem to be 
discontinuous profiles, with maximal values equal to 0.54 m/sec, 0.58 m/sec and 0.52 m/sec. 
From t = 3 sec, velocity profiles change sign as a function of x, with a maximum about 2.67 m/sec 
(A0 = 1). In this case, a symmetric profile of the υ component seems to appear due to the 
geometric aspect of the enclosure. 
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Influence of the location ratio Al 
In this part, the effect of the location ratio Al on the flow structure is analyzed. Three values 

of Al are studied: Al = 10, 5, 1. The opening ratio is here equal to 1/5, and the mass flow rate 
equal to 0.01 kg/sec. The results (Figure 15) presented correspond to t = 3 sec and t = 4 sec. 
Because of space limitations and their little interest, the results at t = 1 sec and t = 2 sec are 
not presented here: there is not a great distance between these test cases, except for the distortion 
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of the main flow produced directly by the injection of hot gases and by the vent. When the 
injection is stopped (at t = 3 sec) we can observe a flow divided into two parts: the partition is 
more important when the location ratio is great. 

An anti-clockwise eddy appears in the superior half of the enclosure, which holds about 1/3 
(Al = 1) of the height of the cavity as long as it holds the half of the enclosure when Al = 10. 
At t = 4 sec, we can see for all cases presented that the flow is separated in two eddies: one in 
the inferior half of the enclosure and the second in the superior part. The limit between these 
two flows varies as a function of the location ratio Al. By increasing the value of Al, the eddy 
located in the superior part grows. These differences in the flow pattern, induced by the location 
ratio, do not produce a great effect about the velocity profiles at the exit section (see Figure 16). 
A positive and negative profile is first seen at t = 3 sec in the case of Al = 1, like it is shown in 
Figure 15. The maximal value is almost insensitive to the variations in the location of the vent 
with respect to the injection points, and is about 2.2 m/s. This value is obtained when the 
overpressure is reached and when the cavity opens to the exterior. 

CONCLUDING REMARKS 

In this paper, a modified ICE method for computing 2D compressible unsteady flows in cavities 
has been presented. One of the interests of this study is the numerical treatment of a low-Mach 
number flow induced by an injection of hot gases into a cavity. Moreover, outgoing flow from 
the enclosure, as well as the later development of an incoming cool flow into the cavity, from 
the exterior, at the exit section, have justified the treatment of the opening of the enclosure by 
resolution of a Riemann problem. Indeed, such a treatment is the more convenient to deal with 
all of possible flow patterns. The results show the effects of the location of the hot gas injection, 
the influence of the vent upon the flow patterns. These indicate that the radiation dominates 
the heat transfer and significantly alters the convective motions. 

The compressibility of the fluid has been taken into account, contrary to numerous studies 
about convection in enclosures, where the Boussinesq approximation is usually made, and the 
injection of hot gases is found to play a key role on the temperature and velocity distributions 
in the enclosure. 
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APPENDIX 

Difference equation of momentum 
The momentum equation is differenced in terms of fluxes: these terms consist of two 

components: a spatially centred term and a donor cell (or upwind) term. The donor cell 
parameter α, 0 a 1, determines the fraction of each component in the total mass flux. 

For the momentum equations, the convection terms are not written in terms of momentum 
fluxes, but as edge-centered fluxes of a velocity gradient. 
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For the x-momentum equation, the convection terms are: 

where 

The complete x-momentum difference equation is: 

where is an estimate of the advanced time pressure. 
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